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1. INTRODUCTION

Suppose A4 1s a finite set of points, I is a reflexive, symmetric binary rela-
tion of adjacency on A, and G denotes the graph (4, I). All graphs in the
following will be finite and have loops at each point as here. Several authors
| 1-3] have studied the notion of an interval graph, i.e., a graph G for which
there 1s an assignment to each point x in 4 of an interval N(x) on the real
line such that for all x, y, € A4,

xIy <> N(x) n N(y) # . ' (1)

In the following, we consider the problem of finding an assignment
satisfying (1) where the N(x) are taken to be “boxes” in Euclidean n-space
E" 1.e., generalized rectangles with sides parallel to the coordinate axes.

Simultaneously, we consider a closely related problem. In [4], we studied
the notion of indifference graph. This is a graph (A, I) for which there is a
real-valued function fon 4 so that forall x, y € A4,

xIy —d(f(x), f() < 1, (2)

where d 1s the usual metric on the real line, i.e., absolute value. A natural
generalization 1s to ask for a representation (2) where f takes values in E”
and d 1s an appropriate metric on £". To maintain an analogy with the
generalization of the interval graph problem, it is convenient to take the
“product metric,”

AKX, X5y ooy X0 iy Vs o s Va)) = max X — Vil

{

because then the representation (2) corresponds exactly to a representation (1)
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with the N(x) all closed" cubes of side-length 1. (Choice of this metric can
also be motivated on economic and psychological grounds.)

These two representation problems will lead to two notions of dimension
~of a graph, the boxicity and cubicity,” and it will be our aim to establish 2
Sharp upper bound for dimension in each case as a function of the number
of points. We start in the next section with the second representation problem.
The development for the first will be entirely analogous, and perhaps a little
simpler.

2. THE CuBICITY

With this introduction, we now propose to study what graphs (A, 1) can
be embedded into n-space in the sense that there is a function f: A — E" satis-
fying (2), where d is the product metric. It is somewhat easier to formulate

the problem in terms of the coordinate functions £, £, , ..., f, of . Thus we
ask: when do there exist real-valued functions f;, £, ..., f, on A4 so that for
all x, y € A,

xly (Vi < n)[|f(x) = fi») < 11. (3)

It 1s convenient here to make one slight convention which is quite natural and
makes the results a little neater to state. It seems fair to speak of a graph
(4, I) as embeddable into 0-space in the above sense if and only 1if all points
in A are adjacent, 1.e., (4, I) is complete.

We begin by noting the not too surprising result that every graph with
n polnts 1s embeddable into n-space in the sense of Eq (3). To see this, simply
list 4asay,a,,...,a,,and define fori=1,2, ..., n,

0 if X = ai
fx)={1 if xla,, x # a;
2 If leai.

This observation permlts us to define, motivated by the intersection interpre-
tation, the cubicity® of a graph G, cub G, as the smallest 7 so that G is embed-
dable into n-space. Each graph has finite cubicity, and mdeed a graph of n
points has cubicity at most 7.

We close this section with a few simple but basic remarks about embed-
dability and cubicity. In particular, it will be helpful to study the intersection of
two graphs with the same point set. We note readily that if » > 1, a graph G

' Boxes are not necessarily closed, though it is not hard to show that if a representation
(1) is attainable with boxes in E”, it is attainable with closed boxes in E™.

? See acknowledgments.

> More precisely, the unit cubicity.
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is embeddable into n-space if and only if G is the intersection of » indifference
graphs. For, each coordinate function gives a representation (2). It follows
easily that if G = H n K, then cub G < cub H + cub K.

Following [4], it is convenient to introduce an equivalence relation £ on
the points of the graph G = (4, I). This is defined by xEy > (Vz)(xIz > yiz).
Note that since our graphs are reflexive, equivalence 1mplies adjacency. Thus,
two points are equivalent if and only if they have the same * closed neighbor-
hoods.”” The relation E is significant because if aEb, then cub G =cub G — a
— cub G — b, where G — x is the subgraph® generated by points different
from x. (Map a and b onto the same point in n-space.) More generally,
cub G = cub G/E, where G/E is the graph obtained from G by cancelling
out L.

3 Tue CusicIiTY OF THE COMPLETE PARTITE GRAPHS

Having proved that every graph of n points can be embedded into n-space,
we are interested in solving the following extremum problem: given n, what
is the smallest k so that we can embed all graphs with » points into k-space ?
Put another way, what is the maximum cubicity c(n) of all graphs with #
points ?

To study the function c(n), it turns out to be extremely useful to know the
cubicity of the so-called complete partite graphs, for the maximum cubicity 1s
actually attained for each » in such a graph. We shall devote this section to
calculating an explicit cubicity formula for the complete partites. A graph
(A4, I) will be called complete partite if A can be written as the disjoint union
of nonempty classes so that no lines (except loops) within a class occur and
all lines between points of different classes occur. We shall denote by
K(ny, n,, ..., n,) the graph consisting of p such classes, containing ny, 1, , . . .
n, points, respectlvely (n; > 0). Of particular interest are the graphs K(l, n)
We shall for simplicity denote K(1, n) by S(n), and call it a star of n vertices.
The singleton point will be called the center of the star and the remaining #
points the vertices. To calculate the cubicity of the graph G = K(ny, ny, ..., 1 )
we shall first calculate the cubicity of the star S(n), for each n, and then
express cub G in terms of the cubicities of the stars S(#;).

THEOREM 1. S(n) is embeddable into k-space if and only if n < 2%, Thus,
cub S(n) = [log,(2n — 1)}, where [X] is the greatest integer in X.

4 Qubgraph will always mean ‘generated” subgraph, i.e., all adjacent lines (edges)
are included.
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PROOF: Suppose n <2 If k =0, then n = 1 and the graph 1s complete
It k>0, embed S(n) into k-space by sending the center into the Origin
€0, 0,...,0)> and the vertices into points of the form (+1, +1,..., + Y
Next, suppose n > 2. We show by induction on % that S(n) cannot be
embedded into k-space. If k = 0, then n > 2* implies S(n) is not complete,
and so not embeddable into k-space. If k = 1, then n > 2F implies that S(x)
contains S(3) = K(1, 3) as a subgraph. But S(3) is not embeddable into 1-
Space, as 1s easily verified directly or from the results of [4]. Thus, S(#) is not
embeddable into 1-space. We now assume the result for k > 1 and prove it
for £+ 1. Suppose n > 2¥™1 and suppose by way of contradiction that

Jis f2s oovs Jorq 1S an embedding of S(n) into (k + 1)-space. Let b denote
the center of S(n) and gy, a, , .. ., a, 1ts vertices, and let

Ay ={a;: fi+1(a;) = fr+1(b)}

and
A, = {a; Srev1(ay) < Je+1(D)}.

This contradicts the inductive assumption.

THEOREM 2. Suppose G = Kn,n,, ..., n,). Then,

(@) ifp>1,
p
CUb G — Z CUb S(nj),
j=1

(b) lfp = 1,
|1 if n,>1
wbG =1y it n, = 1.
Proor: Part (b) is trivial. To prove (a), let G=(4,7) and let

C,,C,,..., C, be the classes of #;, a5 ..., N, points, respectively. Define H i
to be the graph which is obtained from G by adding all lines (edges) within
classes different from C;. Note that G = (\?_, H j - Also, cub H; = cub S(n,),

since all points of 4 — C; are equivalent’ in H j- This gives one-half of the
desired formula, namely an inequality in one direction:

cub G <) cub H; = Z cub S(n,). (4)

To get the inequality in the other direction, let # = cub G and note first
that G has cubicity O (i.e., G is complete) if and only if each » i1s 1, which is
the case if and only if } cub S( i) = 0. This proves the second inequality in

> Equivalence will always refer to the relation £ defined previously.
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the case 1 = 0. Next, suppose n > 1. We may write G = G; NG, N ... N G,
where each G, = (4, I,) is an indifference graph. If n; > 1, let U; be the col-
lection of all 7, so that 7, is missing a line between two points of C;, and define
a graph K; = () {G;: I;€ U;}. Then, K; is the same as the corresponding
graph H ; described above. This follows easily from the observation that each
I. is in one and only one U;. To verify the observation, note first that for
each i, I, 2 I. Thus, if I; is in U; and Uy, j # K, then I; contains a square
K(2, 2) generated by points a, b 1n C;, and points ¢, d in C, . But 1t 1s easy to
verify that indifference graphs cannot contain squares as subgraphs (cf. [4]).
Conversely, if I; is in none of the Uj;, then since I, = I, it is complete. It
follows that G = ﬂ,. ,.G,, and so cub G <=.

Since each I, is in one and only one U;, it follows that anHlU il =n,
where || denotes cardinality. Since cub H; = cub K; < |Uj| if n; > 1, and
cub H; =cub S(1) =01f n; = 1, we have

S cub S(n;) =Y cub H; = ) cub H; < Y |Ujl =n=cubG.

HJ:)']_ HJ}l

Thus, Y cub S(n;) < cub G, and the theorem is proved.

It should be remarked that the same argument establishes a more general
theorem, of which Theorem 2 is a special case. To state this, we need a
notion which will be useful later. A point x in a graph (4, I) is a focal point
if xIa, all a € A. If G is a graph, we shall denote by G/, its focalization, the
oraph obtained by adjoining a focal point. Thus, for example, if G consists
of n points with no lines, G’ is S(n). We have here the following theorem:

TheOREM 3. Let G = (A, I) be a graph. Suppose A can be written as the
disjoint union of Ay, A,, ..., A,, where p > 1, and suppose that in G, all lines
between points in different classes A; occur. Then, if G; denotes the subgraph
generated by A, we have cub G =Y cub G

J?

We are now in a position to calculate d(n), the maximum cubicity of all
complete partite graphs with » points, while leaving for the next section
the proof that c(n) = d(n). It is not too hard to see, using Theorems 1 and 2,
that given n, we maximize the cubicity of K(ny, n,. ..., n,), with n; +n, +
o+ 4+ n,=n, 1f we take as many of the n; as possible equal to 3, and the
remaining one as 1 or 2 if necessary. Thus, for n = 3k +1, 0<i <2, we
have d(n) = cub K(3, 3,...,3,i), with k£ 3’s. Using Theorems 1 and 2, we
can show: f

THEOREM 4. d(n) = [2n] if n# 3 and d(3) = 1.

COROLLARY 4.1. If n>4and n #6,dn) =dn—3) + 2.
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To close this section, we note a simple characterization of the complete

partite graphs, which is useful in showing that ¢(n) = d(n), and whose proof
is left to the reader.

LEMMA 1. A graph is complete partite if and only if it does not contain g
subgraph of the form

h——o, (5)
d |
1.e., 1f and only if there are 3 distinct points a, b, ¢ so that blc but neither
alb nor alc.

4. CALCULATION OF THE M AXIMUM CUBICITY
In this section, we present the proof of the following theorem.

THEOREM 5. c(n) = d(n) for all n.

T'o begin with, we reduce the problem to the study of graphs which have
tocal points. If B is a set of points of the graph G, G — B denotes the sub-
graph generated by points not in B.

LeMMA 2. If a graph G = (A, 1) has a subgraph of the form (5), then
cub G < cub(G — {a, b, c})’ + 2.

PROOF: We note first that G = H n K, where H is the graph obtained
from G by adjoining for each x € 4 (including a, b, ¢) the lines between x and
a, b, c¢; and K is the graph obtained from G by adjoining all lines between
points in 4 — {a, b, c}. It follows that cub G < cub H + cub K. Now, in H,
the points a, b, and ¢ are all equivalent and each is a focal point. Thus, H
has the same cubicity as the graph G — {a, b, ¢} with a focal point adjoined,
L.e., cub H = cub(G — {a, b, c})’. It is left to show that cub K < 2. To prove
this, we write down an explicit embedding /1, /> of K into 2-space. Let

fila) =0,  fi(b) =2, Ji(e) = 3/2,
f2(a) =0 f2(b) = 32, Jae) = 2;

and If x # a, b, ¢, define /1 and f, according to Table 1. We leave it to the
reader to check that £, f, actually do embed K into 2-space.

Now let e(n) denote the maximum cubicity of all graphs with # + 1 points,
including a focal point, or alternatively the maximum cubicity of the focali-
zation of a graph with n points. Then, we have
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LEMMA 3. If n # 3, e(n) < d(n).

ProoOF: The major step in the proof is to establish for n > 4 the recursion
inequality ;

e(n) < max {d(n), cub S(n), e(n — 3) + 2}. - (6)

To prove (6), suppose G has n + 1 points, including a focal point x.
If G— x is complete partite, then G — x = K(n;,n,,...,n,) and G =
K(,ny,n,,...,n,). By Theorem 2, if p> 1, we have cub G =cub G — X,
which is less than or equal to d(n). If p=1, then n,=n, G = 5(n),
and cub G = cub S(n). To establish (6), it 1s now sufficient to assume that
G — x is not complete partite and to prove that cub G <e(n —3) + 2. If
G — x is not complete partite, then G — x has a subgraph of the form (5).
Hence, (5) is a subgraph of G as well, and x #a, b, ¢c. By Lemma 2,
cub G < cub(G — {a, b, ¢})’ + 2. But (G — {a, b, ¢})’ consists of a focal point
~ yadded to G — {a, b, c}. Now, xe G — {a, b, ¢} and thus x and y are two
distinct focal points of (G — {a, b, ¢})’. It follows that x and yp are
equivalent here, and so cub(G — {a, b, c¢})’ =cub(G — {a, b, c, x})’. But
G — {a, b, c,x} has n— 3 points, and so cub(G — {a, b, ¢, x})! < e(n — 3).
Thus cub G < cub(G — {a, b, c})) + 2 < e(n — 3) + 2. This establishes (6).

If n > 4, then as a final preliminary it is easy to verify that cub S(x#) < d(n),
and so we get from (6) the simpler inequality

e(n) < max {d(n), e(n — 3) + 2}. | (7)

The lemma is easily established for n =1, 2; for e(1) = d(1) =0, e(2) =
d(2) = 1. Note next that ¢(3) = 2. For, cub S(3) = 2 and, as the reader can
readily verify for himself, all 4-point graphs with focal points are embeddable
into 2-space. The lemma for n = 4, 5, 6 now follows by a calculation using (7).
Finally, for n > 7, by way of induction, e(n — 3) + 2 < d(n — 3) + 2, which
by Corollary 4.1 is d(n). Thus, e(n) < max{d(n), e(n — 3) + 2} = d(n).

TABLE 1

If x is adjacent to

fi1(x) fa(x)

none of a, b, ¢ 7/4 1/4
a only (among a, b, ¢) ] 1/4
b only 3/2 1/2
¢ only 3/4 5/4
a, b only 1 1/2
a, ¢ only 3/4 1

b, ¢ only 7/4 1

a, b, c

]

]
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We are now ready to complete the proof of Theorem 5. Suppose first
n # 3, 6, and suppose the graph G has n points. It 1s of course suflicient to
prove cub G < d(n). This is trivial if G is complete partite. Otherwise, G has a
subgraph of the form (5) and so by Lemma 2, cub G < cub(G — {a, b, c})’ + 2.
Clearly n>4, since n# 3. Now G- {a,b,c} has n—3 pomts, so
cub(G — {a, b, c})! < e(n — 3). It follows that cub G < e(n — 3) + 2, which
by Lemma 3 and Corollary 4.1 is less than or equal to d(n — 3) + 2 = d(n),
since n > 4 and n # 6. This completes the proof of Theorem 5 1n the case
n#*3,6.

It is simple to verify that ¢(3) = d(3) = 1, thus settling the case n = 3. If

n = 6, let x be an arbitrary point of G and note that G = H n K, where H is

obtained from G by adjoining lines between x and all other points, and K is
obtained from G by adjoining all lines between points of 4 — {x}. Thus,
cubG <cub H+cubK. It is easy to show that cub K<1, while
cub H < e(5) < d(5). Thus, cub G < d(5) + 1 = d(6), and this completes the
proof of Theorem 3. '

5. THE Boxiciry

We turn now to the generalization of the notion of interval graph and
ask whether a graph (4, I) is representable as the intersection graph [in the
sense of Eq. (1)] of boxes in E". Many of the results of Sections 2—4 go over
if we define the boxicity of a graph G, box G, as the smallest # such that G is
representable as the intersection graph of boxes in E”". As before, we take
box G =0 iff G is complete. We sketch the results here. Note first that
by projecting into the coordinate axes, 1t i1s simple to prove that a graph G 1s
representable as the intersection graph of boxes in E" if and only if G is the
intersection of #n interval graphs. Thus, box G < cub G, since each indifference
graph is trivially an interval graph. Hence, each graph has finite boxicity.
Also note that if G = H n K, then box G < box H + box K. Finally, if aEb,

then box G =box G — g =box G — b.

THEOREM 6.

1 if n>1
box 5(n) = {0 if n=1.
PrOOF: S(n) is an interval graph.

THEOREM 7. box K(ny, n,, ...,n,) =) box S(n;) = the number of n; which
are bigger than 1.

..................
R L )
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Proor: If p > 1, the proof of Theorem 2 applies almost verbatim. Other-
wise, the result is trivial.

Note that if all n; are greater than 1, the inequality “less than or equal to ™
in Theorem 7 also can be proved by taking p families of parallel (p — 1)-
dimensional hyperplanes in p-space. This naive representation turns out to be
optimal. Suppose now C(n), D(n), and E(n) are defined for boxicity analo-
gously to ¢(n), d(n), and e(n) for cubicity. Then we have

COROLLARY 7.1. D(n) = [n/2] for all n.
COROLLARY 7.2. D(n) = D(n—2) + 1 for all n = 3.

LeEMMA 4. Suppose G =(A4,1) is a graph, a, be A, and ~alb. Then,
box G < box(G — {a, b})’ + 1.

ProoF: We write G = H n K, where H 18 obtained from G by adjoining
for each x € 4 (including a, b) the lines between X and the points a and b;
and K is obtained from G by adjoining all lines between points of 4 — {a, b}.
We note box G < box H + box K. Moreover, in H, a and b are equivalent
and each is a focal point, so box H = box(G — {a, b})’. Finally, box K < 1,
i.e., K is an interval graph. This 1s easy to see by the characterization of
Lekkerkerker—Boland [3].

LEMMA 5. E(n) < D(n) for all n.

ProOF: We first show that if n > 3, then E(n) < E(n—2)+ 1. For, let G
have n + 1 points and a focal point, x. If G is complete, then box G =0 <
E(n — 2) + 1. Otherwise, there are a, b € G so that ~alb. Note that a, b # X
so xeG — {a, b}. By the previous lemma, box G < box (G — {a, b})’ + 1.
But the focal point added to G — {a, b} 1n (G — {a, b})’ is equivalent to X, soO
box(G — {a, b}y = box(G — {4, b, x})/. Now G — {4, b, x} has n — 2 points,
and therefore box(G — {a, b, x})Y < E(n— 2). Thus, box G < E(n—2)+1,
establishing the desired inequality.

The lemma follows by induction and Corollary 7.2. For, E(1) = D(1) =0,
EQ)= D) =1, and E(n) < En—2+1<Dn—-2)+1= D(n).

TueoreM 8. C(n) = D(n) for all n.

Proor: C(1) = D(1) =0, C2) = D(2) = 1. Suppose G has n > 3 points.
If G is complete, then box G =0 < D(n). Otherwise, by Lemma 4, box G <
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E(n — 2) + 1, which is less than or equal to D(n — 2) + 1 = D(n) by Lemma 5
and Corollary 7.2. Thus, C(n) < D(n).
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